Problem 2

For the following series, write formulas for the sequences a_{n}, S_{n}, and R_{n}, and find the limits of the sequences as $n \rightarrow \infty$ (if the limits exist).

$$
\sum_{0}^{\infty} \frac{1}{5^{n}}
$$

Solution

$$
\begin{aligned}
a_{n} & =\frac{1}{5^{n}} \\
S_{n} & =\sum_{i=0}^{n} \frac{1}{5^{i}}=\sum_{i=0}^{n}\left(\frac{1}{5}\right)^{i}=\frac{1-\left(\frac{1}{5}\right)^{n+1}}{1-\left(\frac{1}{5}\right)}=\frac{5}{4}-\frac{5^{-n}}{4} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{5}{4}-\frac{5^{-n}}{4}\right)=\frac{5}{4} \\
R_{n} & =S-S_{n}=\frac{5}{4}-\left(\frac{5}{4}-\frac{5^{-n}}{4}\right)=\frac{5^{-n}}{4} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{1}{5^{n}}=0 \\
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{5^{-n}}{4}=0
\end{aligned}
$$

